原子力

タスクフォース

「活・原子力」

~私たちの未来のために、原子力活用のあり方を提起する~

経済同友会では原子力に関する本会の考え方「縮・原発 |を2011年に提唱し、そのスタンスを踏襲 してきた。その中では、既存炉の着実な再稼働や次世代原子力の開発を訴えていたものの、本会

の真意について誤解を招く表現でもあった。また近年、2050年カーボンニュートラル実現や エネルギー安全保障の重要性が高まるなど、社会情勢は当時から大きく変化している。今回、 エネルギー委員会の兵頭誠之共同委員長を座長とし、関連委員会メンバーからなる原子力

タスクフォースで検討、「縮・原発 | の表現を見直す新たな考え方 「活・原子力 | と、

エネルギーや原子力に関する熟議の必要性について意見をまとめた。

! 今、私たちがエネルギー問題を真剣に考えなければいけない理由

1. カーボンニュートラル実現は世界の共通目標

脱炭素化はいまや世界全体・人類共通の目標となってお り、カーボンニュートラル対応の成否が国・企業の競争力 に直結する時代に突入している。製品やサービスの利用を 通じた産業分野の消費を含め、私たちの社会に不可欠なエ ネルギーを非化石エネルギー由来へと転換する必要がある。

2. 将来のエネルギー需給の見通し

- ・第6次エネルギー基本計画 (2021年10月22日公表) では 2030年度の電力需要が21年実績比6%減とされるが、 本来18%増となる値を野心的な省エネで抑えた結果であ り、省エネが想定ほど進まなければ需要は上振れる。
- ・生成AIの利用拡大が電力需要を増加させる可能性が指摘 されている。例えばデータセンターの進出により、東京 電力管内だけで2030年代前半までに原子力発電所6~7 基分の追加需要が発生するとされる。他にも、自動運転 によるデータ流通量増加、EV導入など非電力エネルギー の電化推進、経済安全保障上重要な半導体工場の国内立 地など、電力需要を増加させる新たな要因が生じている。

3. 化石燃料への依存と輸入による貿易赤字の継続

・日本はエネルギーを「持たざる国」である。21年の一次エ ネルギー自給率はわずか13%で、先進国の中でも極めて 低い。海外からの化石燃料の輸入は貿易赤字の大きな要 因で、22年は33.5兆円(国民一人当たり26万円以上)もの 国富が流出した。再エネや原子力の活用でエネルギー自 給率を高めない限り、こうした状況が続く。

・日本の化石燃料輸入先は特定の地域や国に偏っており、 地政学リスクや価格・為替リスクを常に抱えている。

4. 生活・産業とエネルギーの関係と各選択肢の評価

- ・エネルギーコストは私たちの生活に直結する問題で、 日々の電気料金やガソリン価格として家計負担になるだ けでなく、企業の収益、就業者の給与にも影響を及ぼす。
- ・日本で発電所を新設した際の電源別コストの試算では、 統合コストを加味すると、非化石電源では原子力が最も 低コストとの結果になった。また、国際エネルギー機関 (IEA) は既設原子力の長期運転を最も低廉な発電方法と 分析しており、安全が保障される限り、できるだけ長期 に運転を継続することが適切としている。
- ・電気料金の値上がりの中で、原子力比率が高い大手電力 会社では料金が低く抑えられている。関西電力と北海道 電力では、産業用の従量料金が3倍近い差となっている。
- ・再エネへの依存度が高まるのに伴い、天候などの環境要 因の急変により供給力が追い付かないリスクが高まる。
- ・東京電力管内では電源の7割が東京湾岸に集中しており、 電源立地のポートフォリオ上の脆弱性を抱えている。

5. エネルギーに関する各種新技術の実装への時間軸

- ・革新的な技術の実現・社会実装がいつになるかは、常に 不確実である。また新たな電源施設の建設には長期の年 月を要するため、早期の取り組みが極めて重要である。
- ・現時点では、核融合を用いずに2050年カーボンニュート ラルを達成することを前提とするのが適切である。

現時点での経済同友会の考え方

・従来の本会スタンス 「縮・原発 | は、震災前に策定された 国の2030年発電比率目標値が原子力5割以上だった事実

を念頭に、老朽化した原子力を順次廃炉として中長期的 には原子力依存度を一定水準まで低減させつつ、安全性 の認められた原子力は再稼働し、より安全性の高い新型 炉の開発・実用化を進めていくという趣旨であった。

- ・しかし言葉の響きから、「反・原発」や「脱・原発」を意味す るかのような誤解を一部で招いていた。
- ・今回の新たな考え方「活・原子力」では、当時の「原子力依 存度を可能な限り低減」という方針を改め、リプレース・ 新増設についても明確に推進すべきとした。

1. 前提となる視点

全ての面で優れたエネルギーが現状存在しない以上、 S+3E*1、ネットゼロ、グローバル競争力などの全体最適を 図るためには、各エネルギーを組み合わせることが肝要と なる。特定のエネルギー源へ過度に依存すれば、さまざま なリスクが生じる可能性がある。例えば、2050年カーボン ニュートラルを再エネ100%で実現する場合、発電コスト が標準シナリオ比で2倍以上になると試算されている。

2. 基本的なスタンス 「活・原子力」

- ・本会として、福島第一原子力発電所の事故を経験した日 本にしかできない「活・原子力」を提起する。すなわち、一 次エネルギーを極力非化石エネルギーにシフトすること を基本として、次の有力な選択肢が手に入るまでの間、 エネルギーポートフォリオの中で、世界最高水準の安全 性を担保した上で、原子力を活用すべきと考える。
- ・特に、大消費地の首都圏を抱え、かつ今後も需給ひっ追 の懸念がより強い関東地域への供給源である柏崎刈羽原 子力発電所の活用は、目下の課題に対して効果的である。
- ・原子力はコスト優位性のある非化石エネルギーであり、 「持たざる国」日本がカーボンニュートラル実現と低廉な 電気料金を両立させる上で、エネルギーの要となる。ま た、エネルギー安全保障上も失ってはならない技術であ り、他国にも増して重要な存在である。
- ・2050年カーボンニュートラルのシナリオ分析 (原子力比率 $10 \sim 50\%$) によれば、原子力比率が高いほどエネルギー システムのコストや電力限界費用が抑えられる。
- ・今後必要な需要に合わせて、既存炉の再稼働、リプレー ス、新増設の順で選択肢となり得るが、生成AIによるデー タ流通量の爆増などを見込めば、再稼働のみでは対応が 不十分な可能性が高い。そのため、今からリプレースや 新増設の投資開始に向けて取り組むことが求められる。
- ・産業界として原子力推進を求める以上、義務と責任も負 わなければならない。需要側の企業は、グローバルな競 争力に資するS+3Eエネルギー源の確保とカーボンニュー トラルの達成に必要な、原子力への支持を表明すべきで ある。使用電力の脱炭素化はScope2*2削減に不可欠な要 素であり、BtoC企業を含めて、責任と覚悟を持って原子

力の必要性を社会に訴えることが求められる。

3. 既存炉の再稼働

(1)国民へのファクトベースの説明【短期】

再稼働の有無が電気料金の地域差に大きく影響している 点、大消費地で電力の安定供給が確保されている背景に立 地地域の貢献がある点を、国民に説明する必要がある。

(2)立地地域と消費地の継続的な対話【短中期】

立地地域では、大消費地の人々の理解が進まないことを 理由に、立地地域に関する風評を懸念する声が多い。原子 力の必要性や立地地域の貢献について、国と大消費地自治 体が連携して、受益者である消費地に発信する必要がある。

(3)原子力規制委員会のあり方の見直し【中期】

規制委の委員に負担が大きく寄り、個別の委員が極めて 広い範囲に全責任を負う歪な仕組みが、審査の長期化と保 守的な判断につながっている。米国を参考に、高い専門性 を持つ規制庁に審査実務と審査案策定を委ね、幅広く高い 見地から最終判断する仕組みが必要だ。原子力規制委員会 設置法改正も視野に入れた見直しが必要である。審査を受 ける側と審査側が建設的な対話を行うことも求められる。

4. リプレース・新増設【中長期】

- ・次世代革新炉として革新軽水炉、高速炉、高温ガス炉な どの研究が進んでいる。既存炉以上の安全性を確保する ため、リプレース・新増設ではこれらの導入を前提とす べきである。将来のエネルギーシステム全体を見据えた、 最適な次世代炉ポートフォリオの構築が望まれる。
- ・革新炉では安全性の飛躍的な向上が期待されることに加 え、電力多消費施設に直接設置が可能なSMR^{*3}や移動可 能なマイクロ炉など、従来の原子力とは根本的に設計思 想が異なる炉型が登場しつつある。規制や立地について、 既存の概念にとらわれずに検討することが重要である。

5. 解消が不可欠な諸問題【中長期】

将来にわたり原子力を活用するためには、廃炉・核燃料 サイクル・最終処分といったバックエンド、投資可能な事 業環境、人材・技術・サプライチェーンの維持、SMR用燃料 やウラン原料の調達などへの対応も不可欠である。

6. 経済同友会は開かれた熟議のカタリストに

エネルギー問題は国の将来にかかわる重要課題であり、 開かれた熟議が必要となる。将来を担う世代など、こうし た情報に触れる機会の少なかった層を中心に、幅広いス テークホルダーへの参加を呼び掛ける。所属会員には、経 営者としての知見を活かしながら、エネルギーや原子力に ついて積極的に言及することを期待する。本会も今回の「仮 説」を継続的に議論し、考え方を柔軟に変化させていく。

- *1 安全性(Safety)を大前提として、安定供給(Energy Security)、経済効率性(Economic Efficiency)、環境適合(Environment)を同時に実現する考え方
- 企業の温室効果ガス排出量のうち、外部から供給された電力、熱、蒸気などのエネルギーを使用したことによる間接的な排出量 Small Modular Reactor。小型モジュール炉。小型で低出力であることから、事故時に原子炉が自動で止まる安全性、工場でのユニット製造による品質向上、工期短縮、建設コスト削減、それに伴う投資リスクの低減、出力調整や熱供給といった利用用途の柔軟性などの優位性がある

「原子力を熟議しよう。」~私たちの未来とエネルギーのために~

1. 開かれた形でエネルギー熟議を

(1) 今こそタブー無きエネルギー熟議を

- ・エネルギー問題は国の未来の根幹を担う重要テーマであ り、社会全体のステークホルダーが自分事として考える ことが望ましい。しかし原子力については、政治家、行 政、発電事業者、専門家、メディア、国民のいずれの主 体も積極的に語ろうとせず、タブー視する状況が続いた。
- ・わが国の原子力政策が方針転換された今こそ、社会全体 を覆う「原子力を語れない空気」の払しょくを図り、将 来に向けて真に実りのある熟議を行う好機である。

(2)長期的な原子力活用には、 確固たる私たち国民の理解が不可欠

一定の国民的合意が得られないまま、もしくは多くの人々 が無関心なまま原子力を推進すれば、原子力政策は常に社 会的な不安定さの下に置かれ続けることとなる。

(3)原子力を棚上げしたまま、

長期のエネルギー政策の具体化は不可能

原子力の再稼働が想定ほど進まない予見性の低い状況は、 原子力以外の電源計画や燃料確保、系統増強などの投資に 影響を及ぼしかねない。長期的に強靭なエネルギーシステ ムを目指す上でも、これ以上の議論の先送りは適切でない。

2. エネルギーコミュケーションの司令塔と仕組み作り

(1)情報不足を解消する戦略的なコミュニケーション組織の必要性

行政が国民に不安を与えないことを優先するあまり、日 本が抱える構造的な課題やリスクは、国民に正しく伝わっ てこなかった。エネルギー全般に対する理解を促すため、 省庁横断かつ経済界も加わった官民連携によって、効果的 なコミュニケーションの仕組みを構築・運営すべきである。

(2) 多様なステークホルダーによる

双方向で対等な対話の場を早期に設置

原子力を巡るコミュニケーションは、ともすれば一方通 行にも感じられる形で長らく行われてきた。しかし私たち が納得できる安心感を得るためには、自らが当事者として 考え、双方向の対話を行い、何らかの形で政策決定の当事 者の一部となっていく意識が不可欠である。24年以降に見 込まれる第7次エネルギー基本計画の改定に向け、早期に 対話の取り組みを開始することが望ましい。

3. エネルギーコストと私たちの生活との関係の可視化

- ・私たちのエネルギーへの関心を高めるためには、判断材 料を多面的かつ分かりやすく整理し、各属性に応じた広 報手段で届けることで、自分事化していく必要がある。
- ・特に、生活に直接関係するコスト面についての分かりや すい発信が有効である。例えば、将来の電源エネルギー ミックスについて複数シナリオを提示し、将来の電気料

金を比較できるようにすることも一例である。

- ・私たちは日々のエネルギー消費に対して費用を負担して いるが、国民が不安を感じずに済む政策が取られるあま り、エネルギー問題を真剣に考えるきっかけは奪われて きた。例えば、エネルギー価格激変緩和措置のガソリン 補助金では、23年9月までに国民一人当たり約5万円の 負担が生じていたが、これが将来世代の負担となる事実 がどれほど認知されていたかは疑問である。
- ・電気料金の経過措置の撤廃など、コスト負担を可視化し、 電力自由化の環境下で消費者に主体的な選択を促す施策 が存在し得る。企業が脱炭素化に要するコストの消費者 への適正な転嫁も課題である。エネルギーへの関心を高 める観点からも、こうした議論を開始すべきである。
- ・教育の場においても、エネルギーの重要性をしっかりと 伝え、日本の置かれた状況や各電源の持つメリットとデ メリットなどを正確に伝えることが望ましい。

4. 原子力の多様な側面への共通理解の形成

- ・震災以降、リスク面のみを強調した言説が多かったため、 社会では原子力の基本的なベネフィットへの認識も十分 ではない。コスト優位性や安定性といった経済価値、非 化石エネルギーという環境価値、人材や技術の維持、地 域貢献といった社会価値をあらためて発信し、原子力の 総合的な価値を認識できる土壌を形成する必要がある。
- ・日本では原子力を一定出力で電力供給する運用を採って いるが、フランスのように柔軟に出力調整をして需給の 増減に対応可能となれば、天候に影響される再エネを補 完し、系統システム安定化にも資する電源となり得る。 原子力と再エネは二律背反の対立する関係ではなく、共 に導入を進めることでS+3Eに基づく電力システムの脱 炭素化に寄与するものと認識を改める必要がある。
- ・製鉄や化学産業で必要となる高温の熱エネルギーは、電 力で生み出すことが難しく、現状化石燃料が用いられて いる。また、今後多くの利用が見込まれる水素の製造に も高温が必要となる。現在研究が進む高温ガス炉では、 約1.000℃の熱を取り出すことが可能とされ、産業分野の 脱炭素化や水素社会の実現に貢献する可能性がある。
- ・今後増加が見込まれるデータセンターでは、多くの電力 を消費すると同時に24時間一定の電力供給が求められる ことから、IT産業を中心に原子力を活用する動きが広が る。OpenAI創業者のサム・アルトマンは「輝かしい未来 に最も重要なのは、豊富な知識と豊富なエネルギー」と して、SMRや核融合のスタートアップに主体的に関与し ている。海外では、データセンター敷地内に安全性の高 いSMRを直接設置して電力供給する計画も進んでいる。